
Abstract— This paper presents a machine vision algorithm 
that utilizes the principal component analysis technique to 
characterize target features in color space from a set of training 
data so that the color classification can be done accurately and 
efficiently. The method, referred to here as the statistically 
based fast bounded box (SFBB), has significant potential in 
agriculture and food processing applications where color 
variability often renders grayscale-based algorithms difficult or 
impossible to work.  We evaluate the algorithm in the context of 
live-bird handling applications and examine the effects of the 
color characterization on computational efficiency by 
comparing the proposed solution against two commonly used 
color classification algorithms; the RCE neural network 
classifier and the support vector machine. Comparison among 
the three methods demonstrates that SFBB is relatively easy to 
train, efficient and effective since with sufficient training data it 
requires no additional optimization steps; these advantages 
make SFBB an ideal candidate for high-speed automation 
involving live and/or natural objects. 

Keywords: Machine Vision, Inspection, Feature Detection, 
Color classification   

I. INTRODUCTION

Natural object identification has received more and more 
attention in automation. Early work focused on identifying a 
human face from grayscale images [1-4] using edge and 
shape information. More recently, color vision as an image 
processing tool in detecting features has widely been adapted 
to human face identification [5-8]. The algorithm based on 
color has been found to be much faster than those based on 
shape. However, color vision has its problems when used in 
natural object identification since no two individuals are 
identical. In addition, perceived color can be very different 
under different lighting conditions. Design of a 
time-efficient, reliable color classification algorithm for 
natural, live object applications has remained a challenge.    

Machine vision (MV) algorithms for detecting features 
of a moving natural-object can be classified into three main 
categories: (1) Features are extracted from a gray-level image 
on the basis of both edge and shape. (2) Features are detected 
by virtue of their characteristic color. (3) The method uses a 
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combination of (1) and (2); often characteristic color 
detection is applied as a pre-processor followed by a shape 
matching algorithm to identify the target feature.  Among 
them, characteristic color detection has been an attractive 
solution particularly in applications where the color 
difference between the target features and its background is 
significant. For high-speed automation applications such as 
handling of live objects for meat production, the shape 
variation and voluntary motion of live, natural objects 
coupled with the stringent production demands to reduce 
computation time make algorithms based on shape 
information look less than attractive for real-time 
applications. The characteristic color detection algorithm 
(CCDA) is especially suitable for detecting features of live 
natural objects and has significant potential in agriculture and 
food processing. However, color images of natural product 
are susceptible to noise as good lighting system can only 
partially solve the noise problem. In addition, color variation 
and uniformity are common; a unique nature of live objects.  
To improve the success rate of detecting color features 
involving live objects, the CCDA must have the ability to 
discriminate target features from color noise at high speed.  
For these reasons, our color vision research has focused on 
addressing two specific issues: The first is to create artificial 
color contrast that aims at highlighting the target while 
suppressing its surrounding; this thrust has been reported in 
[9].  The second, the thrust of this paper, is to improve the 
characterization of the feature color in an attempt to exclude 
noise so that the color classification can be done more 
accurately and efficiently.

The basic idea of a CCDA is to utilize a set of training 
data to approximate the boundary of the color subspace that 
characterizes the feature for subsequent classification.  RCE 
neural network classifier (RCE-NNC) [10] has been one of 
the most commonly used methods for identifying shape 
patterns [3], [11-15]. It has also been used in color vision [16] 
and orientation detection in handling live birds [17]. The 
performance of RCE-NNC as compared with other neural 
networks has been studied in [18].  The success rate of a 
RCE-NNC depends heavily on its designed parameters and 
the topology of the trained network. Although some research 
effort (for example [13] [19]) has been directed towards 
optimizing the topology of a RCE-NNC, its optimization for a 
real-time application has remained a challenge. More 
recently, kernel methods have become more and more 
popular [20].  As one of the commonly used kernel methods, 
the support vector machine (SVM) [21-23] has been 
developed from rigorous statistical learning theory.  Both 
RCE-NNC and SVM are relatively easy to use as compared to 
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many other NNC’s.  In practice, both methods however could 
become less efficient and inaccurate when their parameters 
are poorly tuned; the procedure for optimizing the design 
parameters could be tedious and time-consuming.  

The remainder of this paper offers the following:  
1) We present an alternative method, SFBB, to characterize 
the feature color. The SFBB uses the principal component 
analysis (PCA) technique [24] to obtain the principal axes of 
the training data distribution in the color space.  The principal 
component analysis is well known for its use in the eigenface 
algorithm [1] [2] that helps find the most dominant feature 
from a grayscale image of a human face.  Unlike [1] [2] where 
PCA was used to reduce the dimension of the identification 
problem with the whole grayscale image as a classification 
input, the SFBB method finds a linear transformation to 
minimize the covariance of the training set where individual 
color pixels are used as classification inputs.  
2) We illustrate the use of SFBB for color characterization of 
features in the context of an automaton problem, where 
reliability and high processing speed are of particular 
concern. Specifically, we apply the SFBB to a live-object 
handling application where variability in natural objects is 
usually several orders-of-magnitude higher than that for 
manufactured goods. 
3) We examine the effects of the color boundary on the 
computational efficiency of feature detection by comparing 
the three color classification algorithms; namely, the SFBB, 
the RCE neural network classifier (RCE-NNC), and the 
support vector machine (SVM).  The SFBB uses a bounded 
box with orientation and dimensions defined by the statistics 
of the training set while the RCE-NNC uses hyper-spheres 
and the SVM uses hyper-planes.   

II. STATISTICALLY-BASED FAST BOUNDED BOX (SFBB)

A color signal is represented here in RGB (red, green and 
blue) space, and we consider here the target as a subspace in 
the entire RGB color space.

A. Problem Formulation 
The identification problem can be defined as follows: 

Given a set of scatter points (referred to here as a training 
set) in the target color subspace , the problem is to find its 
boundary  such that for any color vector C in the color 
space, if C is inside  then C represents one point on the 
target feature; otherwise it does not belong to the feature.

If all the members in  are known, the boundary of  is 
also known. Unfortunately, the boundary of the target color 
subspace can only be constructed from a limited set of 
training samples; thus, it is essentially an approximation at 
best! The closeness and shape of the approximated boundary, 
which depends on the decision rules of the specific CCDA 
employed, have a significant influence on the cycle time and 
success rate of the CCDA performance. 

B.  Simple Bound Box in RGB Space and its Problems    

The interest here is to describe the boundary that 
simplifies the subsequent identification process and that 

makes CCDA accurate and fast. A simple bounded box can 
be used to approximate the boundary of the target color 
subspace. This method assumes that the three color 
component vectors are independent random variables. The 
basic idea here is to construct a smallest possible rectangular 
box to enclose representative color points of the target from a 
given training set in RGB space. Such a bounded box can be 
easy constructed from the maximum and minimum values of 
the color component.  The classification can then be reduced 
to simply checking whether the RGB pixel values are within 
the bounds, which is a relatively simple and fast process.   

One problem with the above procedure is that it does not 
result in a tightest box since it does not take into account the 
color characteristics of the feature. In addition, this 
larger-than-necessary box would result in introducing 
unwanted color points (as noise) in the processed image.   

A relatively simple method to examine whether the three 
color component vectors are independent random variables is 
to fit the normal distribution to the training data. If the 
training set matches the ideal normal distribution very well, 
there is a very high probability that these components are 
independent of each other. Otherwise, some of them may be 
related and a change of the variables is necessary to minimize 
correlation among the variables.   

B. Finding SFBB using Principal Component Analysis
In order to minimize the correlation about the component 

vectors, the SFBB method computes the three principal axes 
of the training set for constructing the bounded box. The 
method involves the following steps. 

First, the principal axes characterizing the training set are 
calculated from its covariance matrix.

Given a training set R with three color component 
vectors Rr, Rg and Rb in the RGB space, a covariance matrix 
[U] can be computed from (1):  
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and N is the number of color points. The covariance matrix 
[U] is symmetric. To maximize the variances of interest, we 
apply the singular-value- decomposition method to obtain the 
eigenvalues ( 1, 2, 3) and the normalized eigenvectors (v1,
v2, v3) of [U]. The three principal axes of the new coordinate 
system are given by the unit vectors along v1, v2, and v3.

Second, the training set in RGB space is then transformed 
to the new coordinate system aligned with the three 
principal axes of the training set. 

The training data can be transformed from its original 
RGB space to the new coordinate system: 
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T
1 2 3

ˆ ( )R v v v R R (2)
where T

r g bR R RR and R  are the original vector and 
its corresponding average in RGB space respectively; and 

T
1 2 3

ˆ R R RR  is the transformed color vector.  

Finally, the bounded box is constructed in the new 
coordinate system.  

In order to find an appropriate size for the bounded box 
to best characterize the color of the feature, we use linear 
regression theory to determine the confidence level at which 
the three transformed color components are independent 
random variables; this level is used to specify the boundary of 
the box in terms of standard deviations (SD).  

III. LIVE-BIRD HANDLING APPLICATION

We illustrate the computation procedure with a live-bird 
handling application, where the birds must be shackled in a 
specific direction. The bird’s orientation (forward/backward) 
is determined by identifying its red comb relative to its 
white-feathered body as shown in Fig. 1. Due to varying sizes 
and shapes and some natural reflexes (or voluntarily motion) 
of the birds, machine vision algorithms based on edge and/or 
shapes have difficulties meeting stringent production 
requirements that demand reliability and speed.  In this 
application, the vision algorithm is used to detect the red 
comb of a bird. Apart from a spectrum of red that 
characterizes the combs in a typical batch, noise (such as dirt 
on the feathers, bare spots of flesh, shadow and reflection of 
environmental illumination) present a challenge to reliable 
color detection.

(a) Setup (b)  Forward (c) Backward 
Fig. 1 Experimental setup and typical images   

Figure 2 shows a set of experimentally obtained training 
data of N color points from the comb.  The data are plotted in 
RGB space, along with its corresponding covariance matrix 
and normalized eigenvectors, where the rectangular box 
represents the computed SFBB (with dimensions at 2 SD or 
95% confidence level). Figure 3 compares the normal 
distribution of the red components of the training set against 
those of the transformed vector components.  In Fig. 3, the 
probability distribution is graphed in natural logarithmic 
scale; the dashed line is the ideal normal distribution and the 
discrete points are experimentally obtained data.  

As shown in Fig. 3, the original red component data do 
not match the normal distribution and thus, its vector is not an 
independent random variable. The data distribution in 
transformed coordinates matches the normal distribution very 
well; the transformed coordinates can be treated as 

independent random variables.  This justification permits the 
boundary of the bounded box to be specified in terms of the 
number of standard deviations (SD’s) of each component. 
Clearly, the tightest box (that more closely characterizes the 
color of the comb) is preferred since a larger-than-necessary 
box would include un-related features as noises, which must 
be excluded before color classification. Once the SFBB is 
obtained, the classification becomes a straight-forward 
process; any color pixels that fall inside the box will be 
considered as feature color and those pixels that appear 
outside of the box are considered as noise pixels. 
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Fig.2 Training set and the computed SFBB, data from Fig. 1(b). 

(a) Red color (b) R1 (transformed coordinate)

(c) R2 (transformed coordinate) (d) R3 (transformed coordinate)
Fig. 3 Normal distribution (before and after transform)

IV. EFFECTS OF COLOR CHARACTERIZATION

We examine the effects of the target-subspace boundary 
for characterizing the target color by comparing the SFBB 
against two other methods; RCE neural network classifier 
(RCE-NNC) and support vector machine (SVM).

A. RCE Neural Network 
A three-layer RCE-NNC (shown in Fig. 4) is used to 

provide supervised learning of color pattern categories 
separated by nonlinear, essentially arbitrary boundaries. The 
concept of a pattern class develops from storing in memory a 
limited number of class elements (prototypes). Associated 
with each prototype is a modifiable scalar weighting factor 
( ) that defines the threshold for categorizing an input to the 
prototype. Learning involves (1) commitment of the 
prototypes to memory and (2) adjustment of the various 
factors to eliminate classification errors.  

227



Figure 4 Structure of the trained network 

The three-layer RCE-NNC has I input nodes (equal to the 
dimension of input vector), C output nodes for the number of 
output categories, and a hidden layer.  The hidden layer is 
initially empty and creates nodes dynamically through 
learning.  If the new pattern does not belong to an existing 
class (or is not within the sphere defined by k), a new node is 
created in the hidden layer. A default threshold  and a 
distance function ( )D i jv , v  where vi and vj are two vectors in 
the color space must be assigned before training can begin, 
which could significantly influence the number of nodes 
generated in the hidden layer and the type of hidden node (for 
example, sphere or rectangular box) respectively. Thus, these 
design parameters determine the topology of trained network, 
and hence the performance of classifier. In this study, the 
distance function is a 3D Euclidean distance between two 
vectors in the color space computed by: 

2 2 2( , ) ( ) ( ) ( )k n k n k n k nD r r g g b bW R (3)
The training process of a RCE-NNC is iterative. We illustrate 
here using the following pseudo-code:

Initialization 
Number of nodes on the hidden layer: M =0 

Training begins 
Let 1st pattern R1 belong to cth class resulting in 1st hidden node, M=1 

1 1i iW R ; Vc1 =1; and 1=default threshold, where i = r, g, b.

The process repeats and new hidden cells are created. 
Confusion

With M cells available, the following process repeats for each new training 
pattern.  Consider nth training pattern (belonging to the dth class) arrives. 

For k=1: M

( , )k k k nm N D W R

where ( , )k n k nD W R W R   and
1,

( )
0,

k
k

k

x
N x

x

If 1 and 1k dkm V

Pattern is correctly contained within a cell. 
Else if 1 and 1k ckm V

The classification is incorrect. Decrease k until 0km

End 
If k , 0km then add new cell in the hidden layer. 

1M nW R

( 1) 1d MV , and 

1M M
End 

End 

Once it is trained, the RCE-NNC stores the points in a 
metric space RN.  The boundary of the class is approximated 
by a set of hyper-sphere in feature metric space. The distance 
function relates the unknown pattern to a category. The 
weight of the hidden node is the coordinate of the center of 
the hypersphere. The threshold of hidden node represents the 
radius of the hypersphere. A vector in metric feature space 
will be recognized as one class if it falls into one of the 
hyperspheres that belongs to that class. 

B. Support Vector Machine (SVM)  

The SVM, a classification method developed from linear 
statistical classifier, is the combination of hyper-plane 
classifier [25] and kernel method [26] [27] and is briefly 
introduced here for completeness.  Given the training set 

1 1( , ) , ( , )l lS y yx x

where N
i Xx  and 1, ,iy Y k  are the predictive 

(or independent) variable and the target (or dependent 
variable),  we wish to obtain a mapping: 

:Sf X Y
The SVM discussed here is a two-class classification 
problem, the classes being P, N for yi = 1, which can easily 
be extended to k class classification by constructing k
two-class classifiers. 

Maximal Margin Hyper-planes 
If the training data are linearly separable then there exists 

a pair ( , )bw  such that 

T 1, for all 
1, for all 
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i

i

P
b

N
x
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x (4)

The decision rule is given by 

, ( ) sgn( )T
bf bw x w x (5)

where w is the weight vector; and b  is the threshold. As 
shown in the appendix, the optimal linear hyper-plane is 
constructed in the feature space by applying the margin 
principle which will maximize the margin between two 
classes. The decision function is then given by 
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1
( ) sgn

l
T

i i i
i

f y bx x x (6)

where * *

1

l

i i i
i

yw x ; * *T
i ib y w x ; and T
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are the Lagrange multipliers to be obtained by solving the 
following dual problem given by (A6) in the appendix 

Maximize T T1
2 ( )F I D (7)

Tsubject to 0, 0y ; D is a symmetric l l  matrix 
with elements

T
ij i j i jD y y x x (8)

Note that  is only non-zero when ( ) 1T
i iy bw x , vectors 

for which they are called support vectors since they lie closest 
to the separating hyper-plane. 

The solution obtained is often sparse since only xi with 
non-zero Lagrange multipliers appear in the solution. This is 
important when the data to be classified are very large, as is 
often the case in practical classification situations. However, 
it is possible that the expansion includes a large proportion of 
the training data, which leads to a model that is expensive 
both to store and to evaluate; alleviating this problem is an 
area of ongoing research in SVM. 

Kernel Feature Spaces 
A linear classifier may not be the most suitable 

hypothesis for the two classes.  The SVM can be used to learn 

I Inputs C Outputs
kiW ckV

k

Hidden layer 
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non-linear decision functions by mapping the data to some 
higher dimensional feature space and constructing a 
separating hyperplane in this space. Denoting the mapping by  

and ( )X H x x (9)
Mapping data to H is however time consuming and storing it 
may be impossible. Note that H could be infinite dimensional.  
Hence a kernel function 

T( , ) ( ) ( )K x z x z (10)
is introduced and the decision function becomes   

* *

1
( ) sgn ( , )

l

i i i
i

f y K bx x x (11)

where the bias for any support vector xi is given by 
* *

1
( , )

l

i j i j i
j

b y y K x x (12)

The kernel function allows us to construct an optimal 
separating hyperplane in the space H without explicitly 
performing calculations in this space, which requires K to be 
an easily computable function; commonly used kernels 
include linear, polynomial and radial kernels. In this study, 
we choose a radial basis function for the kernel:

2
( , ) exp( ), 0i j i jK x x x x (13)

The SVM is reduced to solving the Lagrange multipliers from 
(7) with ( , )ij i j i jD y y K x x , the solution of which can be 
obtained using quadratic programming techniques. 

C. Comparison of Results 

We examine experimentally the effects of the boundary 
approximation on computational efficiency in color space by 
comparing the SFBB against the RCE-NNC and SVM.  The 
studies were performed in the context of an automation 
problem and orientation detection of a live bird as described 
in Section III. Eighty one (640x480-pixel) images of grasped 
birds were captured; and divided into two groups, 51 birds 
facing forward and the remaining 30 facing backward. The 
training sets are the same as in Figs. 1 and 2. The images were 
pre-processed with a difference-of-Gaussian filter [9] to 
enhance contrast, and post-processed with a morphological 
operation based on the majority  rule of 10pixels (in an 8x8 
mask) to remove isolated noises.

The following summarize the differences among the 
three methods and observations made from the results: 
1)The SFBB uses a bounded rectangular box (Fig. 2) with its 

orientation and dimensions defined by the training set 
statistics, while the RCE-NNC and SVM use hyper-spheres 
and hyper-planes respectively. To offer a visual 
comparison, Fig. 5(a) shows the geometry topology of 
trained RCE neural network where we choose =8,
minimum threshold =1, and the distance function defined 
in Equation (2). The geometry of the generated nodes of a 
REC-NNC in the hidden layer is spherical in 3D space.  Fig 
5 (b) shows the boundary of the same training set but using 
the SVM classifier. Due to the difficulty in solving the 
boundary of the SVM in closed form, the boundary was 

numerically computed by testing each of the pixel cells in 
RGB space using the SVM classifier. The connected cells 
are combined to form the boundary. The boundary so 
generated is not smooth; however, it is intuitive in 
understanding the SVM classifier boundary. 

(a) trained RCE neural network (b) trained SVM

2)While the SVM is a more general method for solving 
classification problems, it has two major disadvantages: 
a) Unlike SFBB and RCE-NNC which can construct the 

boundary for a single class, SVM needs at least two 
classes to construct a hyper-plane. Although the primary 
target features are the red comb and white body (as 
background), there are points in the image that are 
neither body nor comb.  Thus four classes are needed; 
(B/NB) – feature color for body and not body, and 
(C/NC) – for comb and not comb for this problem. 

(a) C and NC (b) B and NB 
Fig. 6 Training data of SVM 

b) The performance is very sensitive to the training data. 
The training patterns for non-target features must be 
carefully chosen in the proximity of the target in color 
space so that the boundary of the color subspace is tight.

3)The classification results are summarized in Table 1. 
Table 1: Classification results. 

 Forward Backward All % S Rate Time 
SFBB 50/51 30/30 80/81 99% T 
RCE-NNC 51/51 18/30 69/81 85% 1.9T 
SVM 30/51 30/30 60/81 74% 13T 
T=5.8 s/image (MATLAB) and T=0.5s /image (C++) 

As shown in Table 1, the SFBB correctly identify 80 of 81 
cases.  The failed case corresponds to an image of a female 
bird with a small/pale comb, which was captured slightly 
off timing and thus in dim illumination. Written in C++ 
code, the average cycle time is about 0.5 second per image. 
RCE-NNC performed poorly in detecting backward facing 
birds as it introduces excessive noise.  On the other hand, 
SVM missed a number of red combs as the boundary of the 
color subspace is rather tightly fitted.  The SFBB appears to 
have the best potential to meet both cycle time and 
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reliability requirements. In addition, the boundary 
approximation of a SFBB is relatively straight forward and 
relies only on the standard deviation of the training data 
distribution to specify its bounds.  

V. CONCLUSION

A new algorithm has been introduced for characterizing 
feature color of natural, live objects. We also examine 
experimentally the effects of the boundary approximation of 
the color characterization on computational efficiency.  As 
compared against two other commonly used methods (the 
RCE-NNC and the SVM), this algorithm has several 
advantages including simplicity in training, and fast 
classification since only three simple checks of rectangular 
bounds are performed. The computational efficiency and 
reliability of all three methods on color classification have 
also been evaluated in the context of an automation problem.  
The study shows that the statistically based fast bounded box 
can satisfy the stringent requirements of live bid handling 
automation.   

APPENDIX

The inequality constraints (4) can be combined to give 
( ) 1, for all T

i i iy b P Nw x x (A1) 

The pair (w, b) can be rescaled such that T

1, ,
min 1ii l

bw x , The learning 

problem is hence reformulated as minimize 2 Tw w w  subject to the 

constraints of linear separability (A1).  This is equivalent to maximizing the 
distance (or the normal to the hyperplane) between the convex hulls of the 
two classes; this distance is called the margin.  The optimization is now a 
convex quadratic programming (QP) problem 

2 T

,

1Minimize ( ) , subject to ( ) 1, 1, , .
2 i ib

y b i l
w

w w w x  (1) 

This problem has a global optimum and thus avoids the problem of many 
local optima in NN training. The Lagrangian for this problem is  

2 T

1

1( , , ) ( ) 1
2

l

i i i
i

L b y bw w w x (A2)

where T
1( , , )l  are the Lagrange multipliers, one for each data point.  

The solution to this quadratic programming problem is given by maximizing 
L with respect to 0  and minimizing with respect to w, b.  Differentiating 
with respect to w and b and setting the derivatives equal to 0 yields 

1

( , , ) 0
l

i i i
i

L b
y

w w x
w

 and.
1

( , , ) 0
l

i i
i

L b
y

b
w

(A3) 

So that the optimal solution is given by (6) with weight vector 
* *

1

l

i i i
i

yw x (A4) 

Substituting (A3 ) and (A4) into (A2) we can write 
2 T

1 1 1 1

1 1( )
2 2

l l l l

i i i j i j i j
i i i j

F y yw x x (A5) 

which can be written in matrix notation: 
T T1( )

2
F I D (A6) 

where D is a symmetric l l  matrix with elements T
ij i j i jD y y x x .
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